Answer:
Rate of change: [tex]m = 5[/tex]
The initial value is 20
The equation: [tex]y = 5x + 20[/tex]
Step-by-step explanation:
Given
The attached table
Solving (a): The rate of change (m)
This is calculated as:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where:
[tex](x_1,y_1) = (2,30)[/tex]
[tex](x_2,y_2) = (3,35)[/tex]
So:
[tex]m = \frac{35- 30}{3- 2}[/tex]
[tex]m = \frac{5}{1}[/tex]
[tex]m = 5[/tex]
Solving (b): The initial value
Here, we make use of point (0, y) to calculate the initial value:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where
[tex](x_1,y_1) = (0,y)[/tex]
[tex](x_2,y_2) = (3,35)[/tex]
[tex]m = 5[/tex]
So:
[tex]5 = \frac{35 - y}{3 - 0}[/tex]
[tex]5 = \frac{35 - y}{3}[/tex]
Multiply both sides by 3
[tex]3 * 5 = \frac{35 - y}{3}* 3[/tex]
[tex]15 = 35 - y[/tex]
[tex]y = 35 - 15[/tex]
[tex]y = 20[/tex]
Solving (c): The equation
This is calculated using:
[tex]y = m(x - x_1) + y_1[/tex]
Where:
[tex](x_1,y_1) = (2,30)[/tex]
[tex]m = 5[/tex]
So, we have:
[tex]y = 5(x - 2) + 30[/tex]
[tex]y = 5x - 10 + 30[/tex]
[tex]y = 5x + 20[/tex]