Respuesta :

Answer:

Rate of change: [tex]m = 5[/tex]

The initial value is 20

The equation: [tex]y = 5x + 20[/tex]

Step-by-step explanation:

Given

The attached table

Solving (a): The rate of change (m)

This is calculated as:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where:

[tex](x_1,y_1) = (2,30)[/tex]

[tex](x_2,y_2) = (3,35)[/tex]

So:

[tex]m = \frac{35- 30}{3- 2}[/tex]

[tex]m = \frac{5}{1}[/tex]

[tex]m = 5[/tex]

Solving (b): The initial value

Here, we make use of point (0, y) to calculate the initial value:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Where

[tex](x_1,y_1) = (0,y)[/tex]

[tex](x_2,y_2) = (3,35)[/tex]

[tex]m = 5[/tex]

So:

[tex]5 = \frac{35 - y}{3 - 0}[/tex]

[tex]5 = \frac{35 - y}{3}[/tex]

Multiply both sides by 3

[tex]3 * 5 = \frac{35 - y}{3}* 3[/tex]

[tex]15 = 35 - y[/tex]

[tex]y = 35 - 15[/tex]

[tex]y = 20[/tex]

Solving (c): The equation

This is calculated using:

[tex]y = m(x - x_1) + y_1[/tex]

Where:

[tex](x_1,y_1) = (2,30)[/tex]

[tex]m = 5[/tex]

So, we have:

[tex]y = 5(x - 2) + 30[/tex]

[tex]y = 5x - 10 + 30[/tex]

[tex]y = 5x + 20[/tex]