Answer:
[tex]\boxed{\textsf{ The possible values of y is \textbf{ 3 or -3 }.}}[/tex]
Step-by-step explanation:
Here Point A and B are 5 units apart . The coordinates of A are (-1,2) and B is (-1,y) .We need to find the possible coordinates of y . So let's use Distance Formula :-
[tex]\rule{200}2[/tex]
★ Distance Formula :-
If we need to find the distance between two points say , [tex]\sf ( x_1,y_1 ) \:\:\:\: \& \:\:\:\: ( x_2,y_2) [/tex] , then we can find out the distance as ,
[tex]\boxed{\boxed{ \sf Distance =\sqrt{ ( x_2-x_1)^2+(y_2-y_1)^2 } }}[/tex]
[tex]\rule{200}2[/tex]
Put on the respective values ,
[tex]\sf\implies Distance =\sqrt{ ( x_2-x_1)^2+(y_2-y_1)^2 } \\\\\sf\implies Distance = \sqrt{ (-1+1)^2+(2-y)^2}\\\\\sf\implies Distance =\sqrt{ (2-y)^2 } \\\\\sf\implies 5^2 = (2-y)^2 \\\\\sf\implies 5 = \pm (2-y) \\\\\sf\implies 5 = (2-y) \qquad or \qquad 5= -(2-y)\\\\\sf\implies y = 2-5 \qquad or \qquad y = 5-2 \\\\\sf\implies\boxed{\pink{\frak{ y = \pm 3 }}}[/tex]