Respuesta :

Answer:

Area of ABCD = 45.1 cm²

Step-by-step explanation:

From the figure attached,

Area of ABCD = Area of ΔBCD + Area of ΔABD

Area of ΔABD = [tex]\frac{1}{2}(AB)(BD)[/tex]

sin(55°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

sin(55°) = [tex]\frac{AB}{BD}[/tex]

AB = 10sin(55°)

AB = 8.19 cm

cos(55°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

              = [tex]\frac{AD}{BD}[/tex]

AD = 10cos(55°)

AD = 5.74cm

Area of ΔABD = [tex]\frac{1}{2}(8.19)(5.74)[/tex]

                        = 23.51 cm²

Area of ΔBCD = [tex]\frac{1}{2}(\text{Base})(\text{Height})[/tex]

                        = [tex]\frac{1}{2}(BD)(CE)[/tex]

tan(38°) = [tex]\frac{CE}{BE}[/tex]

BE = [tex]\frac{CE}{\text{tan}(38)}[/tex]

Similarly, DE = [tex]\frac{CE}{\text{tan}(44)}[/tex]

Since, BE + DE = 10 cm

[tex]\frac{CE}{\text{tan}(38)}+\frac{CE}{\text{tan}(44)}=10[/tex]

CE(1.28 + 1.04) = 10

CE(2.32) = 10

CE = 4.31 cm

Area of ΔBCD = [tex]\frac{1}{2}(10)(4.31)[/tex]

                       = 21.55 cm²

Area of ABCD = Area of ΔBCD + Area of ΔABD

                        = 21.55 + 23.51

                        = 45.06

                        ≈ 45.1 cm²

Ver imagen eudora