Answer:
Part A)
[tex]\displaystyle \frac{dy}{dx}=x^2+2x-7[/tex]
Part B)
[tex]\displaystyle \Big(-4,\frac{53}{3}\Big)\text{ and } \Big(2, -\frac{37}{3}\Big)[/tex]
Step-by-step explanation:
We are given the function:
[tex]\displaystyle y=\frac{x^3}{3}+x^2-7x-5[/tex]
Part A)
To find dy/dx, differentiate both sides with respect to x:
[tex]\displaystyle \frac{dy}{dx}=\frac{d}{dx}\Big[\frac{x^3}{3}+x^2-7x-5\Big][/tex]
Differentiate:
[tex]\displaystyle \frac{dy}{dx}=x^2+2x-7[/tex]
Part B)
We want the points on the curve where the gradient is parallel to y = x.
The equation y = x has a constant gradient of 1.
Therefore, we can set dy/dx = 1 and solve for x:
[tex]1=x^2+2x-7[/tex]
Rewrite:
[tex]x^2+2x-8=0[/tex]
Factor:
[tex](x+4)(x-2)=0[/tex]
Thus:
[tex]x=-4\text{ and } x=2[/tex]
And substituting them back for the original equation, we acquire:
[tex]\displaystyle y(-4)=\frac{(-4)^3}{3}+(-4)^2-7(-4)-5=\frac{53}{3}[/tex]
And:
[tex]\displaystyle y(2)=\frac{(2)^3}{3}+(2)^2-7(2)-5=-\frac{37}{3}[/tex]
Our points are:
[tex]\displaystyle \Big(-4,\frac{53}{3}\Big)\text{ and } \Big(2, -\frac{37}{3}\Big)[/tex]