contestada

Question a and b
I would really appreciate if you could help me with this question.

Question a and b I would really appreciate if you could help me with this question class=

Respuesta :

Answer:

Part A)

[tex]\displaystyle \frac{dy}{dx}=x^2+2x-7[/tex]

Part B)

[tex]\displaystyle \Big(-4,\frac{53}{3}\Big)\text{ and } \Big(2, -\frac{37}{3}\Big)[/tex]

Step-by-step explanation:

We are given the function:

[tex]\displaystyle y=\frac{x^3}{3}+x^2-7x-5[/tex]

Part A)

To find dy/dx, differentiate both sides with respect to x:

[tex]\displaystyle \frac{dy}{dx}=\frac{d}{dx}\Big[\frac{x^3}{3}+x^2-7x-5\Big][/tex]

Differentiate:

[tex]\displaystyle \frac{dy}{dx}=x^2+2x-7[/tex]

Part B)

We want the points on the curve where the gradient is parallel to y = x.

The equation y = x has a constant gradient of 1.

Therefore, we can set dy/dx = 1 and solve for x:

[tex]1=x^2+2x-7[/tex]

Rewrite:

[tex]x^2+2x-8=0[/tex]

Factor:

[tex](x+4)(x-2)=0[/tex]

Thus:

[tex]x=-4\text{ and } x=2[/tex]

And substituting them back for the original equation, we acquire:

[tex]\displaystyle y(-4)=\frac{(-4)^3}{3}+(-4)^2-7(-4)-5=\frac{53}{3}[/tex]

And:

[tex]\displaystyle y(2)=\frac{(2)^3}{3}+(2)^2-7(2)-5=-\frac{37}{3}[/tex]

Our points are:

[tex]\displaystyle \Big(-4,\frac{53}{3}\Big)\text{ and } \Big(2, -\frac{37}{3}\Big)[/tex]