Respuesta :

Answer:

[tex]\boxed{\textsf{ The lenght of segment is \textbf{ 10}$\sqrt{\textbf{2}} $ \textbf{ units }.}}[/tex]

Step-by-step explanation:

We need to find the lenght of the segment drawn from (-5,2) to (5,-8) . Basically here we need to find the distance between the two points .

Here we can use Distance Formula , which is used to find the distance between two points .

[tex]\rule{200}2[/tex]

Distance Formula :-

If we need to find the distance between two points say , [tex]\sf ( x_1,y_1 ) \:\:\:\: \& \:\:\:\: ( x_2,y_2) [/tex] , then we can find out the distance as ,

[tex]\boxed{\boxed{ \sf Distance =\sqrt{ ( x_2-x_1)^2+(y_2-y_1)^2 } }}[/tex]

[tex]\rule{200}2[/tex]

Put on the respective values ,

[tex]\sf\implies Distance =\sqrt{ ( x_2-x_1)^2+(y_2-y_1)^2 } \\\\\sf\implies Distance =\sqrt{ ( -5-5)^2+(2+8)^2 }\\\\\sf\implies Distance= \sqrt{ (-10)^2+(10)^2 }\\\\\sf\implies Distance =\sqrt{ 100+100}\\\\\sf\implies Distance =\sqrt{200}\\\\\sf\implies Distance =\sqrt{2\times 10\times 10}\\\\\sf\implies \boxed{\pink{\frak{ Distance = 10\sqrt{2} \:\; units }}}[/tex]