Respuesta :
Answer:
[tex]Area = x^2- 25[/tex]
[tex]Area =9x^2 +24x + 16[/tex]
[tex]Length = (3x -2)[/tex]
[tex]Speed = \left(y^2-3y+1\right)[/tex]
[tex]Product = 3m^3 + 6m^2 - 6m[/tex]
Step-by-step explanation:
Solving (1):
[tex]Length = (x + 5)[/tex]
[tex]Width = (x - 5)[/tex]
Required
Calculate Area
[tex]Area = Length * Width[/tex]
[tex]Area = (x + 5) * (x - 5)[/tex]
[tex]Area = x^2 + 5x - 5x - 25[/tex]
[tex]Area = x^2- 25[/tex]
Solving (2):
Given
[tex]Length = (3x + 4)[/tex]
Required: Calculate Area
[tex]Area =Length * Length[/tex]
[tex]Area =(3x + 4) * (3x + 4)[/tex]
[tex]Area =9x^2 + 12x + 12x + 16[/tex]
[tex]Area =9x^2 +24x + 16[/tex]
Solving (3):
[tex]Area = 3x^2 + 7x - 6[/tex]
[tex]Width = x + 3[/tex]
Required: Calculate Length
[tex]Area = Length * Width[/tex]
[tex]Length = \frac{Area}{Width}[/tex]
[tex]Length = \frac{3x^2 + 7x - 6}{x + 3}[/tex]
Factorize the numerator
[tex]Length = \frac{3x^2 + 9x -2x - 6}{x + 3}[/tex]
[tex]Length = \frac{3x(x + 3) -2(x + 3)}{x + 3}[/tex]
[tex]Length = \frac{(3x -2) (x + 3)}{x + 3}[/tex]
Divide by x + 3
[tex]Length = (3x -2)[/tex]
Solving (4):
[tex]Distance = (2y^3 - 7y^2 + 5y -1)[/tex]
[tex]Time = 2y - 1[/tex]
Required: Determine the average speed
This is calculated as:
[tex]Speed = \frac{Distance}{Time}[/tex]
[tex]Speed = \frac{2y^3 - 7y^2 + 5y -1}{2y - 1}[/tex]
Factorize the numerator
[tex]Speed = \frac{\left(2y-1\right)\left(y^2-3y+1\right)}{2y - 1}[/tex]
[tex]Speed = \left(y^2-3y+1\right)[/tex]
Solving (5):
Multiply [tex](m^2 + 2m - 2)[/tex] by sum of [tex](m + 3)[/tex] and [tex](2m - 3)[/tex]
First, calculate the sum:
[tex]Sum = m + 3 + 2m - 3[/tex]
[tex]Sum = m + 2m+3 - 3[/tex]
[tex]Sum = 3m[/tex]
Then, the product
[tex]Product = (m^2 + 2m - 2)(3m)[/tex]
[tex]Product = 3m^3 + 6m^2 - 6m[/tex]
Answer:
Step-by-step explanation:
Solving (1):
Required
Calculate Area
Solving (2):
Given
Required: Calculate Area
Solving (3):
Required: Calculate Length
Factorize the numerator
Divide by x + 3
Solving (4):
Required: Determine the average speed
This is calculated as:
Factorize the numerator
Solving (5):
Multiply by sum of and
First, calculate the sum:
Then, the product