Respuesta :
Answer:
Explanation:
Charge on uranium ion = charge of a single electron
= 1.6 x 10⁻¹⁹ C
charge on doubly ionised iron atom = charge of 2 electron
= 2 x 1.6 x 10⁻¹⁹ C = 3.2 x 10⁻¹⁹ C
Let the required distance from uranium ion be d .
force on electron at distance d from uranium ion
= 9 x 10⁹ x 1.6 x 10⁻¹⁹ / r²
force on electron at distance 61.10 x 10⁻⁹ - r from iron ion
= 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
For equilibrium ,
9 x 10⁹ x 1.6 x 10⁻¹⁹ / r² = 9 x 10⁹ x 3.2 x 10⁻¹⁹ / (61.10 x 10⁻⁹ - r )²
2 d² = (61.10 x 10⁻⁹ - r )²
1.414 r = 61.10 x 10⁻⁹ - r
2.414 r = 61.10 x 10⁻⁹
r = 25.31 nm .
(a) The distance from the uranium atom at which an electron will be in equilibrium is [tex]2.04 \times 10^{-8} \ m[/tex]
(b) The magnitude of the force on the electron from the uranium ion is [tex]3.46 \times 10^ 6 \ N[/tex]
The given parameters:
- distance between the iron and the uranium, d = 61.1 nm
- charge of uranium ion, q₁ = 1.6 x 10⁻¹⁹ C
- charge of doubly ionized atom, q₂ = 2q₁ = 3.2 x 10⁻¹⁹ C
The force on the electron due to uranium ion at distance r is calculated as follows;
[tex]F _1 = \frac{Kq_1^2}{r^2} \\\\F_1 = \frac{9\times 10^9 \times (1.6\times 10^{-19})^2}{r^2} \\\\F_1 = \frac{2.3 \times 10^{-28}}{r^2}[/tex]
The force on the electron due to uranium ion at distance less than 61.10 nm.
R = 61.10 nm - r
[tex]F_2 = \frac{9\times 10^9 \times (3.2 \times 10^{-19})^2}{(61.1 \times 10^{-9} \ - \ r)^2} \\\\\F_2 = \frac{9.216 \times 10^{-28}}{(61.1 \times 10^{-9} \ - \ r)^2}[/tex]
At equilibrium, the force between the electron and ions will be equal.
[tex]\frac{9.216 \times 10^{-28}}{(61.1 \times 10^{-9} \ - \ r)^2}= \frac{2.3 \times 10^{-28}}{r^2}\\\\\frac{4}{(61.1 \times 10^{-9} \ - \ r)^2} = \frac{1}{r^2} \\\\4r^2 = (61.1 \times 10^{-9} \ - \ r)^2\\\\2^2r^2 = (61.1 \times 10^{-9} \ - \ r)^2\\\\2r = 61.1 \times 10^{-9} \ - \ r\\\\3r = 61.1 \times 10^{-9} \\\\r = \frac{61.1 \times 10^{-9}}{3} \\\\r = 2.04 \times 10^{-8} \ m[/tex]
The magnitude of the force on the electron from the uranium ion is calculated as follows;
[tex]F = \frac{kq_1^2}{r^2} \\\\F = \frac{9\times 10^9 \times 1.6\times 10^{-19}}{(2.04 \times 10^{-8})^2} \\\\F= 3.46 \times 10^6 \ N[/tex]
Learn more here:https://brainly.com/question/16796365