Respuesta :
Answer:
7.08
Explanation:
To solve this problem we'll use the Henderson-Hasselbach equation:
- pH = pka + log[tex]\frac{[A^-]}{[HA]}[/tex]
Where [tex]\frac{[A^-]}{[HA]}[/tex] is the ratio of [sodium formate]/[formic acid] and pka is equal to -log(Ka), meaning that:
- pka = -log (1.8x10⁻⁴) = 3.74
We input the data:
- 4.59 = 3.74 + log[tex]\frac{[A^-]}{[HA]}[/tex]
And solve for [tex]\frac{[A^-]}{[HA]}[/tex]:
- 0.85 = log[tex]\frac{[A^-]}{[HA]}[/tex]
- [tex]10^{(0.85)}[/tex]=[tex]\frac{[A^-]}{[HA]}[/tex]
- [tex]\frac{[A^-]}{[HA]}[/tex] = 7.08
The ratio of [sodium formate] to [formic acid] needed to make the buffer is 7.08
How to determine the pKa
- Equilibrium constant (Ka) = 1.8×10¯⁴
- pKa =?
pKa = –Log Ka
pKa = –Log 1.8×10¯⁴
pKa = 3.74
How to determine the ratio of [sodium formate] to [formic acid]
- pH = 4.59
- pKa = 3.74
- Ratio of [sodium formate] to [formic acid] =?
pH = pKa + Log[sodium formate]/[formic acid]
4.59 = 3.74 + Log[sodium formate]/[formic acid]
Collect like terms
4.59 – 3.74 = Log[sodium formate]/[formic acid]
0.85 = Log[sodium formate]/[formic acid]
Take the anti-log of 0.85
[sodium formate]/[formic acid] = anti-log 0.85
[sodium formate]/[formic acid] = 7.08
Learn more about pH of buffer:
https://brainly.com/question/3709867