Answer:
D. 3 : 1
Explanation:
Let suppose that A and B are particles. From statement we know that [tex]K_{A} = K_{B }[/tex] (same kinetic energy) and [tex]m_{A} = 9\cdot m_{B}[/tex]. Then,
[tex]K_{A} = K_{B}[/tex]
[tex]\frac{1}{2}\cdot m_{A}\cdot v_{A}^{2} = \frac{1}{2}\cdot m_{B}\cdot v_{B}^{2}[/tex]
[tex]m_{A} \cdot v_{A}^{2} = m_{B}\cdot v_{B}^{2}[/tex]
[tex]\frac{v_{B}}{v_{A}} = \sqrt{\frac{m_{A}}{m_{B}} }[/tex]
[tex]\frac{v_{B}}{v_{A}} = 3[/tex]
And the ratio of the momentum of A to the momentum of B is:
[tex]r = \frac{m_{A}\cdot v_{A}}{m_{B}\cdot v_{B}}[/tex]
[tex]r = 9\times \frac{1}{3}[/tex]
[tex]r = 3[/tex]
Hence, the correct answer is D.