Which set of ordered pairs represent y as a function of x?
a) {(-5,3) (6,2) (8,-9) (-5,4)}
b) {(9,4) (8,4) (9,5) (8,5)}
c) {(6,8) (7,8) (8,8) (9,9)}
d) {(-7,4) (-7,5) (-7,10) (-7,6)}

Which set of ordered pairs represent y as a function of x a 53 62 89 54 b 94 84 95 85 c 68 78 88 99 d 74 75 710 76 class=

Respuesta :

Answer:

The quadratic equations and their solutions are;

9 ± √33 /4 = 2x² - 9x + 6.

4 ± √6 /2 = 2x² - 8x + 5.

9 ± √89 /4 = 2x² - 9x - 1.

4 ± √22 /2 = 2x² - 8x - 3.

Explanation:

Any quadratic equation of the form, ax² + bx + c = 0 can be solved using the formula x = -b ± √b² - 4ac / 2a. Here a, b, and c are the coefficients of the x², x, and the numeric term respectively.

We have to solve all of the five equations to be able to match the equations with their solutions.

2x² - 8x + 5, here a = 2, b = -8, c = 5.                                                  x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(5) / 2(2) = 8 ± √64 - 40/4.     24 can also be written as 4 × 6 and √4 = 2. So                                                                                     x = 8 ± 2√6 / 2×2= 4±√6/2.

2x² - 10x + 3, here a = 2, b = -10, c = 3.                                                   x =-b ± √b² - 4ac / 2a =-(-10) ± √(-10)² - 4(2)(3) / 2(4) = 10 ± √100 + 24/4. 124 can also be written as 4 × 31 and √4 = 2. So                                                                              x = 10 ± 2√31 / 2×2 = 5 ± √31 /2.

2x² - 8x - 3, here a = 2, b = -8, c = -3.                                                    x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(-3) / 2(2) = 8 ± √64 + 24/4.     88 can also be written as 4 × 22 and √4 = 2. So                                                                             x = 8 ± 2√22 / 2×2 = 4± √22/2.

2x² - 9x - 1, here a = 2, b = -9, c = -1.                                                     x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(-1) / 2(2) = 9 ± √81 + 8/4.                                          x = 9 ± √89 / 4.

2x² - 9x + 6, here a = 2, b = -9, c = 6.                                                    x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(6) / 2(2) = 9 ± √81 - 48/4.                                                                             x = 9 ± √33 / 4 .

Step-by-step explanation:

Answer with Explanation:

To qualify as a function, each x value may not have more than 1 Y value.

This rules out A, B, and D.

The answer is C.

Why is A incorrect? -5 (the x value) has more than one y value so it is wrong.

Why is B incorrect? 9 (the x value) has more than one y value so it is wrong.

Why is D incorrect? -7 (the x value) has more than one y value so it is wrong.

You can also use the vertical line test to graph these pairs. Then, test by drawing a vertical line through the graph. If the vertical line goes through more than 1 pair, it is not a function.