Respuesta :

Given:

The expression is

[tex]x^2+bx+6[/tex]

To find:

The values of b so that the given expression can be factored into binomials factors.

Solution:

An expression is [tex]ax^2+bx+c[/tex] factorable if b is the sum of possible factors of ac.

We have,

[tex]x^2+bx+6[/tex]

Here, [tex]a=1,b=b,c=6[/tex].

[tex]ac=(1)(6)[/tex]

[tex]ac=6[/tex]

Some, factor forms of 6 are (1×6) and (2×3).

[tex]1+6=7[/tex]

[tex]2+3=5[/tex]

For b=7,

[tex]x^2+7x+6=x^2+x+6x+6[/tex]

[tex]x^2+7x+6=x(x+1)+6(x+1)[/tex]

[tex]x^2+7x+6=(x+1)(x+6)[/tex]

For b=5,

[tex]x^2+5x+6=x^2+2x+3x+6[/tex]

[tex]x^2+5x+6=x(x+2)+3(x+2)[/tex]

[tex]x^2+5x+6=(x+2)(x+3)[/tex]

Therefore, the two possible values of b are 7 and 5.