Answer:
Step-by-step explanation:
perimeter=2(125+80)=2(205)=410 yards
let the length of new rectangle be x and y.
Perimeter=2(x+y)
2(x+y)=410
x+y=410/2=205 yards
y=205-x
area A=xy=x(205-x)=205x-x²
[tex]\frac{dA}{dx} =205-2x\\\frac{dA}{dx}=0,gives~205-2x=0\\x=\frac{205}{2}\\\frac{d^2A}{dx^2}=-2<0 ~at~x=\frac{205}{2}\\[/tex]
A is maximum at x=205/2
y=205-205/2=(410-205)/2=205/2
so x=205/2=102.5 yards
y=205/2=102.5 yards