Respuesta :
Answer:
[tex]v = (v_0^{\frac{3}{2}}-\frac{3cx}{2m})^\frac{2}{3}[/tex]
[tex]x = \frac{2m}{c}*v_0^{\frac{3}{2}}[/tex]
Explanation:
Given
[tex]f(v) =- cv^\frac{1}{2}[/tex]
To start with, we begin with
[tex]F = ma[/tex]
Substitute the expression for F
[tex]-cv^\frac{1}{2} = ma[/tex]
[tex]-ma = cv^\frac{1}{2}[/tex]
Acceleration (a) is:
[tex]a = \frac{dv}{dt}[/tex]
So, the expression becomes:
[tex]m\frac{dv}{dt} = -cv^\frac{1}{2}[/tex]
-----------------------------------------------------------------------------------------
Velocity (v) is:
[tex]v = \frac{dx}{dt}[/tex] --- distance/time
[tex]v * \frac{dv}{dx}= \frac{dx}{dt}* \frac{dv}{dx}[/tex]
[tex]v * \frac{dv}{dx}= \frac{dv}{dt}[/tex]
[tex]\frac{dv}{dt} = v * \frac{dv}{dx}[/tex]
--------------------------------------------------------------------------------------------
So, we have:
[tex]m\frac{dv}{dt} = -cv^\frac{1}{2}[/tex]
[tex]mv * \frac{dv}{dx} = -cv^\frac{1}{2}[/tex]
Divide both sides by [tex]v^\frac{1}{2}[/tex]
[tex]mv^{1-\frac{1}{2}} * \frac{dv}{dx} = -c[/tex]
[tex]mv^{\frac{1}{2}} * \frac{dv}{dx} = -c[/tex]
Divide both sides by m
[tex]v^{\frac{1}{2}} * \frac{dv}{dx} = -\frac{c}{m}[/tex]
[tex]v^{\frac{1}{2}} * dv = -\frac{c}{m} * dx[/tex]
Integrate:
[tex]\int\limits^v_{v_0} {v^{\frac{1}{2}}} \, dv = -\frac{c}{m}\int\limits^x_0 {}} \, dx[/tex]
[tex]\frac{2}{3}v^{\frac{3}{2}}|\limits^v_{v_0} = -\frac{c}{m}x|\limits^x_0[/tex]
[tex]\frac{2}{3}(v^{\frac{3}{2}} - v_0^{\frac{3}{2}} ) = -\frac{cx}{m}[/tex]
[tex]v^{\frac{3}{2}} - v_0^{\frac{3}{2}} = -\frac{3cx}{2m}[/tex]
[tex]v^{\frac{3}{2}} = v_0^{\frac{3}{2}}-\frac{3cx}{2m}[/tex]
[tex]v = (v_0^{\frac{3}{2}}-\frac{3cx}{2m})^\frac{2}{3}[/tex]
Next, is to get the maximum velocity by distance x.
To do this, we find the derivation by x
[tex]\frac{dv}{dx} = 0[/tex]
[tex]\frac{2}{3}(v_0^{\frac{3}{2}}-\frac{3cx}{2m})^{\frac{2}{3} - 1} * -\frac{3c}{2m} = 0[/tex]
[tex]\frac{2}{3}(v_0^{\frac{3}{2}}-\frac{3cx}{2m})^{\frac{2-3}{3}} * -\frac{3c}{2m} = 0[/tex]
[tex]\frac{2}{3}(v_0^{\frac{3}{2}}-\frac{3cx}{2m})^{\frac{-1}{3}} * -\frac{3c}{2m} = 0[/tex]
[tex](v_0^{\frac{3}{2}}-\frac{3cx}{2m})^{\frac{-1}{3}} * -\frac{c}{m} = 0[/tex]
Divide both sides by [tex]-\frac{c}{m}[/tex]
[tex](v_0^{\frac{3}{2}}-\frac{3cx}{2m})^{\frac{-1}{3}} = 0[/tex]
Take cube roots of both sides
[tex](v_0^{\frac{3}{2}}-\frac{3cx}{2m})^{-1} = 0[/tex]
[tex]v_0^{\frac{3}{2}}-\frac{3cx}{2m} = 0[/tex]
[tex]\frac{3cx}{2m} = v_0^{\frac{3}{2}}[/tex]
[tex]x = \frac{2m}{c}*v_0^{\frac{3}{2}}[/tex]