Respuesta :
Solution :
Alternative A Alternative B Alternative C
Annual fixed cost 105000 126000 82000
Variable fixed cost 24 25 37
a). We have to find out the Break even quantity :
Break Even quantity for A [tex]$=\frac{\text{annual fixed cost}}{(\text{price - variable cost per unit})}$[/tex]
[tex]$=\frac{105000}{52-24}$[/tex]
= 3750 units
Break Even quantity for B [tex]$=\frac{\text{annual fixed cost}}{(\text{price - variable cost per unit})}$[/tex]
[tex]$=\frac{126000}{52-25}$[/tex]
= 4666 units
Break Even quantity for C [tex]$=\frac{\text{annual fixed cost}}{(\text{price - variable cost per unit})}$[/tex]
[tex]$=\frac{82000}{52-37}$[/tex]
= 5466 units
Therefore, Alternate A has the lowest Break Even quantity.
b). Now,
[tex]$\text{Profit} = (\text{price - variable cost per unit}) \times \text{units to sell - total fixed cost}$[/tex]
[tex]$\text{Profit of A} = (52 - 24) \times 10000 - 105000$[/tex]
= 280,000 - 105,000
= 175,000
[tex]$\text{Profit of B} = (52 - 25) \times 10000 - 126000$[/tex]
= 270,000 - 126,000
= 144,000
[tex]$\text{Profit of C} = (52 - 37) \times 10000 - 82000$[/tex]
= 150,000 - 105,000
= 45,000
Thus, alternate A has the highest amount of profit.
c).
[tex]$\text{Units of target profit = break even quantity} + \frac{\text{target profit} }{(\text{price - variable cost per unit })}$[/tex]
Units of the target profit for A [tex]$=3750 + \frac{50000}{52-24}$[/tex]
�� = 5535 units
Units of the target profit for B [tex]$=4666 + \frac{50000}{52-25}$[/tex]
= 6517 units
Units of the target profit for C [tex]$=5466 + \frac{50000}{52-37}$[/tex]
= 8799 units
Thus Alternative A will require the lowest volume of the output.