Answer:
see below
Step-by-step explanation:
to understand this
you need to know about:
given:
- f(x)=3x³-2x²-12x+8
- -a×-b=ab
- -a×b=-ab
- a²-b²=(a+b)(a-b)
to do:
- use factor theorem to show that (x+2) is a factor of f(x)
tips and formulas:
- When f(c)=0 then x−c is a factor of f(x)
let's solve:
according to the question
x+2=0
x=-2
- [tex] \sf substitute \: the \: value \: of \: x \: : \\ \sf 3 {( - 2)}^{3} - 2( { - 2)}^{2} - 12( - 2) + 8[/tex]
- [tex] \sf simplify \: exponets : \\ 3( - 8) - 2(4) - 12( - 2) + 8[/tex]
- [tex] \sf \: multiply : \\ \tt - 24 - 8 + 24 + 8[/tex]
- [tex] \sf simplify : \\ \sf- 32 + 32 \\ \sf0[/tex]
therefore
we have proven that x+2 is a factor of 3x³-2x²-12x+8
let's factorise 3x³-2x²-12x+8
- factor out x²: x²(3x-2)-12x+8
- factor out -4: x²(3x-2)-4(3x-2)
- group: (x²-4)(3x-2)
- use a²-b² = (a+b)(a-b):
and
we are done