contestada

2. The polynomial 3x3 – 2x2 – 12x + 8 is denoted by f(x).
(a) Use factor theorem to show that (x + 2) is a factor of f(x).

Respuesta :

Answer:

see below

Step-by-step explanation:

to understand this

you need to know about:

  • factor theorem
  • PEMDAS

given:

  • f(x)=3x³-2x²-12x+8
  • -a×-b=ab
  • -a×b=-ab
  • a²-b²=(a+b)(a-b)

to do:

  • use factor theorem to show that (x+2) is a factor of f(x)

tips and formulas:

  • When f(c)=0 then x−c is a factor of f(x)

let's solve:

according to the question

x+2=0

x=-2

  1. [tex] \sf substitute \: the \: value \: of \: x \: : \\ \sf 3 {( - 2)}^{3} - 2( { - 2)}^{2} - 12( - 2) + 8[/tex]
  2. [tex] \sf simplify \: exponets : \\ 3( - 8) - 2(4) - 12( - 2) + 8[/tex]
  3. [tex] \sf \: multiply : \\ \tt - 24 - 8 + 24 + 8[/tex]
  4. [tex] \sf simplify : \\ \sf- 32 + 32 \\ \sf0[/tex]

therefore

we have proven that x+2 is a factor of 3x³-2x²-12x+8

let's factorise 3x³-2x²-12x+8

  1. factor out x²: x²(3x-2)-12x+8
  2. factor out -4: x²(3x-2)-4(3x-2)
  3. group: (x²-4)(3x-2)
  4. use a²-b² = (a+b)(a-b):
  • (x+2)(x-2)(3x-2)

and

we are done

RELAXING NOICE
Relax