Compute the difference quotient, f(x+h)-f(x)/h , for the function f(x) = 3/2x. Show all algebraic work and steps, then circle/box your final answer.

Respuesta :

Answer:

[tex]\frac{f(x + h) - f(x)}{h} = \frac{3}{2}[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \frac{3}{2}x[/tex]

Required

Calculate [tex]\frac{f(x + h) - f(x)}{h}[/tex]

First, we calculate f(x + h)

[tex]f(x) = \frac{3}{2}x[/tex]

[tex]f(x + h) = \frac{3}{2}(x + h)[/tex]

[tex]f(x + h) = \frac{3}{2}x + \frac{3}{2}h\\[/tex]

The equation becomes:

[tex]\frac{f(x + h) - f(x)}{h}[/tex]

[tex]\frac{f(x + h) - f(x)}{h} = \frac{\frac{3}{2}x + \frac{3}{2}h - \frac{3}{2}x}{h}[/tex]

[tex]\frac{f(x + h) - f(x)}{h} = \frac{\frac{3}{2}x - \frac{3}{2}x+ \frac{3}{2}h}{h}[/tex]

[tex]\frac{f(x + h) - f(x)}{h} = \frac{\frac{3}{2}h}{h}[/tex]

[tex]\frac{f(x + h) - f(x)}{h} = \frac{3}{2}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico