Answer:
[tex]\frac{f(x + h) - f(x)}{h} = \frac{3}{2}[/tex]
Step-by-step explanation:
Given
[tex]f(x) = \frac{3}{2}x[/tex]
Required
Calculate [tex]\frac{f(x + h) - f(x)}{h}[/tex]
First, we calculate f(x + h)
[tex]f(x) = \frac{3}{2}x[/tex]
[tex]f(x + h) = \frac{3}{2}(x + h)[/tex]
[tex]f(x + h) = \frac{3}{2}x + \frac{3}{2}h\\[/tex]
The equation becomes:
[tex]\frac{f(x + h) - f(x)}{h}[/tex]
[tex]\frac{f(x + h) - f(x)}{h} = \frac{\frac{3}{2}x + \frac{3}{2}h - \frac{3}{2}x}{h}[/tex]
[tex]\frac{f(x + h) - f(x)}{h} = \frac{\frac{3}{2}x - \frac{3}{2}x+ \frac{3}{2}h}{h}[/tex]
[tex]\frac{f(x + h) - f(x)}{h} = \frac{\frac{3}{2}h}{h}[/tex]
[tex]\frac{f(x + h) - f(x)}{h} = \frac{3}{2}[/tex]