Respuesta :

Answer:

a = 7; b = ⁷/2

Step-by-step explanation:

Recall the acronym, SOHCAHTOA

We would apply trigonometric ratio formula in finding a and b.

Reference angle [tex] (\theta) [/tex] = 60°

Opposite side to the reference angle = [tex] \frac{7\sqrt{3}}{2} [/tex]

Adjacent side = b

Hypotenuse = a

✔️To find a, we would apply SOH, which is:

[tex] sin (\theta) = \frac{opp}{hyp} [/tex]

Plug in the values

[tex] sin (60) = \frac{\frac{7\sqrt{3}{2}}{a} [/tex]

[tex] \frac{\sqrt{3}}{2} = \frac{\frac{7\sqrt{3}{2}}{a} [/tex] (sin 60 = √3/2)

[tex] \frac{\sqrt{3}}{2} = \frac{7\sqrt{3}{2}*\frac{1}{a} [/tex]

[tex] \frac{\sqrt{3}}{2} = \frac{7\sqrt{3}{2a} [/tex]

Cross multiply

[tex] \sqrt{3}*2a = 7\sqrt{3}*2 [/tex]

[tex] 2a\sqrt{3} = 14\sqrt{3} [/tex]

Side both sides by √3

[tex] 2a = 14 [/tex]

Divide both sides by 2

a = 14/2

a = 7

✔️To find b, apply TOA, which is:

[tex] tan (\theta) = \frac{opp}{adj} [/tex]

Plug in the values

[tex] tan (60) = \frac{\frac{7\sqrt{3}{2}}{b} [/tex]

[tex] \sqrt{3} = \frac{\frac{7\sqrt{3}{2}}{b} [/tex] (tan 60 = √3)

[tex] \sqrt{3} = \frac{7\sqrt{3}{2}*\frac{1}{a} [/tex]

[tex] \sqrt{3} = \frac{7\sqrt{3}{2b} [/tex]

Cross multiply

[tex] \sqrt{3}*2b = 7\sqrt{3} [/tex]

[tex] 2b\sqrt{3} = 7\sqrt{3} [/tex]

Divide both sides by √3

[tex] 2b = 7 [/tex]

Divide both sides by 2

b = 7/2

ACCESS MORE
EDU ACCESS