Answer:
Follows are the solution to the given points:
Step-by-step explanation:
Please find the complete question in the attached file.
Given values:
[tex]g= 9.8 \ \frac{m}{s^2}\\\\u= 12 \ \frac{m}{s}\\\\h=700 \ m[/tex]
For point a:
[tex]\to V= u-gt[/tex]
[tex]\to V = 12 - 9.8t[/tex]
For point b:
[tex]\to S(t)= ut- \frac{1}{2}gt^2+h[/tex]
[tex]\to S(t) = 11 t - \frac{1}{2}9.8 t^2 + 700 \\\\[/tex]
[tex]= 11 t - 4.9t^2 + 700[/tex]
For point c:
[tex]\ Let, \ \ v(t) = 0 \\\\\to 0= 12- 9.8 t\\\\\to 9.8t= 12\\\\\to t= \frac{12}{9.8}\\\\\to t = 1.22\ sec[/tex]
Calculating the highest point:
[tex]\to s (1.22 ) = 12(1.22) - 4.9(1.22)^2 + 700[/tex]
[tex]= 12(1.22) - 4.9(1.22)^2 + 700 \\\\ = 14.64 - 4.9(1.4884) + 700 \\\\ = 14.64 - 7.29316+ 700 \\\\ = 7.34684+ 700 \\\\ = 707.34684[/tex]
For point d:
[tex]\to s(t) = 0 \to 707.34684 - 4.9t^2=0 \\\\\to 707.34684 = 4.9t^2 \\\\\to t^2=\frac{707.34684}{4.9} \\\\\to t^2= 144.356498\\\\\to t = 12.01 \ sec\\\\\bold{ \to \text{total time} = 12.01 + 1.22 = 13.23 \ \ sec}[/tex]