Answer:
[tex](x-2)^2+(y-1)^2=212\\[/tex]
or
[tex]x^2 - 4 x + y^2 - 2 y - 207 = 0[/tex]
Step-by-step explanation:
Method 1:
For finding the radius:
The distance between points [tex](x_{1} ,y_{1})[/tex]and [tex](x_{2} ,y_{2})[/tex] is:
[tex]\sqrt{(x_{1} -y_{1})^{2}+(x_{2} -y_{2})^{2}}[/tex]
Substitute [tex](x_{1} ,y_{1})[/tex] = (-2, 15) and [tex](x_{2} ,y_{2})[/tex] = (6, -13):
[tex]=\sqrt{((-2-6)^2+(-(-13)+15)^2}[/tex]
[tex]=4\sqrt{53}[/tex]
Which is the diameter
The radius:
[tex]4\sqrt{53} /2\\=2\sqrt{53}[/tex]
The centre:
The midpoint of two endpoints:
[tex]x=(-2+6)/2=2\\y=(15-13)/2=1\\[/tex]
Center is (2,1)
The standard form:
Circle with radius r and centre (a,b) is [tex](x-a)^2 + (y-b)^2 = r^2[/tex]
[tex](x-2)^2+(y-1)^2=(2\sqrt{53})^2\\ (x-2)^2+(y-1)^2=212\\[/tex]
Expanding to get the general form:
[tex]x^2 - 4 x + y^2 - 2 y - 207 = 0[/tex]
Method 2:
Let the locus [tex]P(x,y)[/tex] be the circle:
By angle in a semi-circle, The angle inscribed in a semicircle is always a right angle (90°).
This means line joining from one endpoint of diameter is perpendicular to the line joining from another endpoint, two lines always have the product of slope = -1:
[tex](\frac{y-15}{x+2} )(\frac{y+13}{x-6})=-1\\ (y-15)(y+13)=-(x+2)(x-6)\\x^2+y^2-4x-2y-207=0[/tex]