Respuesta :

Answer:

[tex](x-2)^2+(y-1)^2=212\\[/tex]

or

[tex]x^2 - 4 x + y^2 - 2 y - 207 = 0[/tex]

Step-by-step explanation:

Method 1:

For finding the radius:

The distance between points [tex](x_{1} ,y_{1})[/tex]and [tex](x_{2} ,y_{2})[/tex] is:

[tex]\sqrt{(x_{1} -y_{1})^{2}+(x_{2} -y_{2})^{2}}[/tex]

Substitute [tex](x_{1} ,y_{1})[/tex] = (-2, 15) and [tex](x_{2} ,y_{2})[/tex] = (6, -13):

[tex]=\sqrt{((-2-6)^2+(-(-13)+15)^2}[/tex]

 [tex]=4\sqrt{53}[/tex]

Which is the diameter

The radius:

[tex]4\sqrt{53} /2\\=2\sqrt{53}[/tex]

The centre:

The midpoint of two endpoints:

[tex]x=(-2+6)/2=2\\y=(15-13)/2=1\\[/tex]

Center is (2,1)

The standard form:

Circle with radius r and centre (a,b) is [tex](x-a)^2 + (y-b)^2 = r^2[/tex]

[tex](x-2)^2+(y-1)^2=(2\sqrt{53})^2\\ (x-2)^2+(y-1)^2=212\\[/tex]

Expanding to get the general form:

[tex]x^2 - 4 x + y^2 - 2 y - 207 = 0[/tex]

Method 2:

Let the locus [tex]P(x,y)[/tex] be the circle:

By angle in a semi-circle, The angle inscribed in a semicircle is always a right angle (90°).

This means line joining from one endpoint of diameter is perpendicular to the line joining from another endpoint, two lines always have the product of slope = -1:

[tex](\frac{y-15}{x+2} )(\frac{y+13}{x-6})=-1\\ (y-15)(y+13)=-(x+2)(x-6)\\x^2+y^2-4x-2y-207=0[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico