The requires side lengths are:
[tex]AD = \frac{49}{25}[/tex]
[tex]BD = \frac{168}{25}[/tex]
[tex]CD = \frac{576}{25}[/tex]
Considering triangle BDC, we have:
[tex]BC^2 = BD^2 +CD^2[/tex]
This gives
[tex]24^2 = BD^2 +(25 - AD)^2[/tex]
[tex]576 = BD^2 +(25 - AD)^2[/tex] --------- (1)
Considering triangle ABD, we have:
[tex]7^2 = BD^2 + AD^2[/tex]
[tex]49 = BD^2 + AD^2[/tex] ---- (2)
Subtract (2) from (1)
[tex]576 - 49 = BD^2 -BD^2 +(25 - AD)^2 - AD^2[/tex]
[tex]527 = (25 - AD)^2 - AD^2[/tex]
Expand
[tex]527 = 625 - 50AD + AD^2 - AD^2[/tex]
[tex]527 = 625 - 50AD[/tex]
Collect like terms
[tex]50AD = 625 - 527[/tex]
[tex]50AD = 98[/tex]
Divide both sides by 50
[tex]AD = \frac{98}{50}[/tex]
Reduce fraction
[tex]AD = \frac{49}{25}[/tex]
Recall that:
[tex]49 = BD^2 + AD^2[/tex]
So, we have:
[tex]49 = BD^2 + (49/25)^2[/tex]
[tex]49 = BD^2 + 2401/625[/tex]
Collect like terms
[tex]BD^2 = 49 - 2401/625[/tex]
Take LCM
[tex]BD^2 = \frac{625 *49 - 2401}{625 }[/tex]
[tex]BD^2 = \frac{28224}{625}[/tex]
Take the square roots of both sides
[tex]BD = \frac{168}{25}[/tex]
Also, we have:
[tex]CD = 25 - AD[/tex]
This gives
[tex]CD = 25 - \frac{49}{25}[/tex]
Take LCM
[tex]CD = \frac{625 - 49}{25}[/tex]
[tex]CD = \frac{576}{25}[/tex]
Hence, the requires side lengths are:
[tex]AD = \frac{49}{25}[/tex]
[tex]BD = \frac{168}{25}[/tex]
[tex]CD = \frac{576}{25}[/tex]
Read more about right triangles at:
https://brainly.com/question/2437195