Please help! will give brainliest!
Given right triangle ABC with altitude BD drawn from vertex B to hypotenuse AC, find the lengths of AD, BD, and CD.
Keep as improper fraction

Please help will give brainliest Given right triangle ABC with altitude BD drawn from vertex B to hypotenuse AC find the lengths of AD BD and CD Keep as imprope class=

Respuesta :

Answer:

AD = 3

BD = 10

CD = 17

Step-by-step explanation:

The requires side lengths are:

[tex]AD = \frac{49}{25}[/tex]

[tex]BD = \frac{168}{25}[/tex]

[tex]CD = \frac{576}{25}[/tex]

Considering triangle BDC, we have:

[tex]BC^2 = BD^2 +CD^2[/tex]

This gives

[tex]24^2 = BD^2 +(25 - AD)^2[/tex]

[tex]576 = BD^2 +(25 - AD)^2[/tex] --------- (1)

Considering triangle ABD, we have:

[tex]7^2 = BD^2 + AD^2[/tex]

[tex]49 = BD^2 + AD^2[/tex] ---- (2)

Subtract (2) from (1)

[tex]576 - 49 = BD^2 -BD^2 +(25 - AD)^2 - AD^2[/tex]

[tex]527 = (25 - AD)^2 - AD^2[/tex]

Expand

[tex]527 = 625 - 50AD + AD^2 - AD^2[/tex]

[tex]527 = 625 - 50AD[/tex]

Collect like terms

[tex]50AD = 625 - 527[/tex]

[tex]50AD = 98[/tex]

Divide both sides by 50

[tex]AD = \frac{98}{50}[/tex]

Reduce fraction

[tex]AD = \frac{49}{25}[/tex]

Recall that:

[tex]49 = BD^2 + AD^2[/tex]

So, we have:

[tex]49 = BD^2 + (49/25)^2[/tex]

[tex]49 = BD^2 + 2401/625[/tex]

Collect like terms

[tex]BD^2 = 49 - 2401/625[/tex]

Take LCM

[tex]BD^2 = \frac{625 *49 - 2401}{625 }[/tex]

[tex]BD^2 = \frac{28224}{625}[/tex]

Take the square roots of both sides

[tex]BD = \frac{168}{25}[/tex]

Also, we have:

[tex]CD = 25 - AD[/tex]

This gives

[tex]CD = 25 - \frac{49}{25}[/tex]

Take LCM

[tex]CD = \frac{625 - 49}{25}[/tex]

[tex]CD = \frac{576}{25}[/tex]

Hence, the requires side lengths are:

[tex]AD = \frac{49}{25}[/tex]

[tex]BD = \frac{168}{25}[/tex]

[tex]CD = \frac{576}{25}[/tex]

Read more about right triangles at:

https://brainly.com/question/2437195

ACCESS MORE
EDU ACCESS
Universidad de Mexico