Respuesta :

Answer:

Approximately [tex]10\; \rm m \cdot s^{-1}[/tex] at [tex]5.6^\circ[/tex] below the horizon.

  • Horizontal component of velocity: [tex]10\; \rm m \cdot s^{-1}[/tex].
  • Vertical component of velocity: [tex]0.981\; \rm m\cdot s^{-1}[/tex] (downwards.)

(Assumption: air resistance on the ball is negligible; [tex]g = 9.81\; \rm m \cdot s^{-2}[/tex].)

Explanation:

Assume that the air resistance on the ball is negligible. The horizontal component of the velocity of the ball would stay the same at [tex]10\; \rm m \cdot s^{-1}[/tex] until the ball reaches the ground.

On the other hand, the vertical component of the ball would increase (downwards) at a rate of [tex]g = 9.81\; \rm m\cdot s^{-2}[/tex] (where [tex]g[/tex] is the acceleration due to gravity.) In [tex]0.1\; \rm s[/tex], the vertical component of the velocity of this ball would have increased by [tex]9.81\; \rm m \cdot s^{-2} \times 0.10\; \rm s = 0.981\; \rm m \cdot s^{-1}[/tex].

However, right after the ball rolled off the edge of the table, the vertical component of the velocity of this ball was [tex]0\; \rm m\cdot s^{-1}[/tex]. Hence, [tex]0.10\; \rm s[/tex] after the ball rolled off the table, the vertical component of the velocity of this ball would be [tex]0\; \rm m \cdot s^{-1} + 0.981\; \rm m\cdot s^{-1} = 0.981\; \rm m \cdot s^{-1}[/tex].

Calculate the magnitude of the velocity of this ball. Let [tex]v_{x}[/tex] and [tex]v_{y}[/tex] and denote the horizontal and vertical component of the velocity of this ball, respectively. The magnitude of the velocity of this ball would be [tex]\displaystyle \sqrt{{v_x}^{2} + {v_y}^{2}}[/tex].

At [tex]0.10\; \rm s[/tex] after the ball rolled off the table, [tex]v_x = 10\; \rm m \cdot s^{-1}[/tex] while [tex]v_y = 0.981\; \rm m \cdot s^{-1}[/tex]. Calculate the magnitude of the velocity of the ball at this moment:

[tex]\begin{aligned} \| v \| &= \sqrt{{v_x}^{2} + {v_y}^{2}} \\ &= \sqrt{\left(10\; \rm m \cdot s^{-1}\right)^{2} + \left(0.981\; \rm m \cdot s^{-1}\right)^{2}} \\ &\approx 10.0\; \rm m\cdot s^{-1}\end{aligned}[/tex].

Calculate the angle between the horizon and the velocity of the ball (a vector) at that moment. Let [tex]\theta[/tex] denote that angle.

[tex]\displaystyle \tan \theta = \frac{\text{rise}}{\text{run}}[/tex].

For the vector representing the velocity of this ball:

[tex]\displaystyle \tan \theta = \frac{0.981\; \rm m \cdot s^{-1}}{10\; \rm m \cdot s^{-1}} = 0.0981[/tex].

Calculate the size of this angle:

[tex]\theta = \arctan 0.0981 \approx 5.62^\circ[/tex].

Notice that the vertical component of the velocity of this ball at that moment points downwards (towards the ground.) Hence, the corresponding velocity should point below the horizon.

ACCESS MORE
EDU ACCESS