Answer:
[tex]Base = 18ft[/tex]
[tex]Height = 12ft[/tex]
Explanation:
Given
Triangle 1 (Tony Stark):
[tex]Base = 6ft[/tex]
[tex]Height = 4ft[/tex]
Triangle 2 (Dr. Banner):
[tex]A_2 = 108ft^2[/tex]
Required
Determine the dimensions of the second triangle
The area of a triangle is:
[tex]Area = 0.5 * Base * Height[/tex]
First, calculate the area of Triangle 1
[tex]A_1 = 0.5 * Base * Height[/tex]
[tex]A_1 = 0.5 * 6ft * 4ft[/tex]
[tex]A_1 = 12ft^2[/tex]
Divide the area of Triangle 2 with the area of triangle to get the scale factor (n) of the area.
[tex]n = \frac{A_2}{A_1}[/tex]
[tex]n = \frac{108ft^2}{12ft^2}[/tex]
[tex]n = \frac{108}{12}[/tex]
[tex]n = 9[/tex]
The scale factor (k) of the dimensions of triangle 1 to 2 is the square root of the scale factor of the area (n):
[tex]k = \sqrt{n[/tex]
[tex]k = \sqrt{9[/tex]
[tex]k = 3[/tex]
For triangle 1, we have:
[tex]Base = 6ft[/tex]
[tex]Height = 4ft[/tex]
The dimension of triangle 2 is:
[tex]Base = 3 * 6ft[/tex]
[tex]Base = 18ft[/tex]
[tex]Height = 3 * 4ft[/tex]
[tex]Height = 12ft[/tex]