Answer:
See Below.
Step-by-step explanation:
In the given trapezoid, A and B are the mid-points of QR and PR, respectively.
Question 1)
Please refer to the first diagram below.
As instructed, we will join Q and B to produce QB to meet SR at C.
Statements: Reasons:
[tex]1)\text{ } PQ\parallel SR[/tex] Given
[tex]2)\text{ } \angle RCQ\cong \angle PQC[/tex] Alternate Interior Angles Theorem
[tex]3)\text{ } B \text{ is the midpoint of } PR[/tex] Given
[tex]4)\text{ } PB=BR[/tex] Definition of Midpoint
[tex]5)\text{ } \angle CRB\cong \angle QPB[/tex] Alternate Interior Angles Theorem
[tex]6)\text{ } \Delta CRB\cong \Delta QPB[/tex] AAS-Congruence
[tex]7)\text{ } QB\cong CB[/tex] CPCTC
[tex]8)\text{ }A\text{ is the midpoint of } SQ[/tex] Given
[tex]9)\text{ } SA=AQ[/tex] Definition of Midpoint
[tex]10)\text{ } AB\parallel SR[/tex] Triangle Midsegment Theorem
Question 2)
(We will use the proven statements above as "given.")
(And please continue referring to the first figure provided.)
Statements: Reasons:
[tex]1)\text{ } AB\parallel SR[/tex] Given
[tex]2)\text{ } \angle QSR\cong\angle QAB[/tex] Corresponding Angles Theorem
[tex]3)\text{ } \angle SCQ\cong\angle ABQ[/tex] Corresponding Angles Theorem
[tex]4)\text{ } \Delta SCQ\sim \Delta ABQ[/tex] Angle-Angle Similarity
[tex]5)\text{ } \displaystyle \frac{SQ}{AQ}=\frac{SC}{AB}[/tex] CSSTP
[tex]6)\text{ } A\text{ is the midpoint of } SQ[/tex] Given
[tex]8)\text{ } SA=AQ[/tex] Definition of Midpoint
[tex]9)\text{ } SQ=SA+AQ[/tex] Segment Addition
[tex]10)\text{ } SQ=2AQ[/tex] Substitution
[tex]11)\text{ } \displaystyle \frac{2AQ}{AQ}=\frac{SC}{AB}[/tex] Substitution
[tex]12)\text{ } \displaystyle 2=\frac{SC}{AB}[/tex] Division Property of Equality
[tex]13)\text{ } 2AB=SC[/tex] Multiplication Property of Equality
[tex]14)\text{ } SR=SC+CR[/tex] Segment Addition
[tex]15)\text{ } \Delta CRB\cong\Delta QPB[/tex] Given
[tex]16)\text{ } CR\cong PQ[/tex] CPCTC
[tex]17)\text{ }SR=SC+PQ[/tex] Substitution
[tex]18)\text{ } SC=SR-PQ[/tex] Subtraction Property of Equality
[tex]19)\text{ } 2AB=SR-PQ[/tex] Substitution
[tex]\displaystyle 20)\text{ } AB=\frac{1}{2}(SR-PQ)[/tex] Division Property of Equality