Given:
The equation is
[tex]y=5x^3-6x^2-4x+8[/tex]
To find:
The coordinates of the turning point.
Solution:
We have,
[tex]y=5x^3-6x^2-4x+8[/tex]
Differentiate with respect to x.
[tex]\dfrac{dy}{dx}=5(3x^2)-6(2x)-4(1)+(0)[/tex]
[tex]\dfrac{dy}{dx}=15x^2-12x-4[/tex]
For the turning points [tex]\dfrac{dy}{dx}=0[/tex].
[tex]15x^2-12x-4=0[/tex]
Using quadratic formula:
[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\dfrac{-(-12)\pm \sqrt{(-12)^2-4(15)(-4)}}{2(15)}[/tex]
[tex]x=\dfrac{12\pm \sqrt{144+240}}{30}[/tex]
[tex]x=\dfrac{12\pm \sqrt{384}}{30}[/tex]
Now,
[tex]x=\dfrac{12+\sqrt{384}}{30}\text{ and }x=\dfrac{12-\sqrt{384}}{30}[/tex]
[tex]x\approx 1.053\text{ and }x\approx-0.253[/tex]
Putting x=1.053 in the given equation, we get
[tex]y=5(1.053)^3-6(1.053)^2-4(1.053)+8[/tex]
[tex]y\approx 2.973[/tex]
Putting x=−0.253 in the given equation, we get
[tex]y=5(-0.253)^3-6(-0.253)^2-4(-0.253)+8[/tex]
[tex]y\approx 8.547[/tex]
Therefore, the turning points are (1.053,2.973) and (-0.253, 8.547).