Answer:
[tex]x =\± \frac{2\sqrt{6}}{7}[/tex]
Step-by-step explanation:
The question has missing details as the unit circle is not shown, However, I'll solve on a general terms.
Given
[tex]P = (x,-\frac{5}{7})[/tex]
Required
Determine the possible value of x
Since point p lies on the unit circle, we'll solve this question using the following unit circle formula:
[tex]x^2 + y^2 = 1[/tex]
Substitute -5/7 for y
[tex]x^2 + (-\frac{5}{7})^2 = 1[/tex]
[tex]x^2 + \frac{25}{49} = 1[/tex]
Collect Like Terms
[tex]x^2 =1- \frac{25}{49}[/tex]
Take LCM
[tex]x^2 =\frac{49 -25}{49}[/tex]
[tex]x^2 =\frac{24}{49}[/tex]
Take the square root of both sides
[tex]x =\± \sqrt{\frac{24}{49}}[/tex]
[tex]x = \±\frac{\sqrt{24}}{7}[/tex]
[tex]x = \±\frac{\sqrt{4*6}}{7}[/tex]
Split
[tex]x = \±\frac{\sqrt{4}*\sqrt{6}}{7}[/tex]
[tex]x =\± \frac{2*\sqrt{6}}{7}[/tex]
[tex]x =\± \frac{2\sqrt{6}}{7}[/tex]