Respuesta :

Answer:

[tex]x =\± \frac{2\sqrt{6}}{7}[/tex]

Step-by-step explanation:

The question has missing details as the unit circle is not shown, However, I'll solve on a general terms.

Given

[tex]P = (x,-\frac{5}{7})[/tex]

Required

Determine the possible value of x

Since point p lies on the unit circle, we'll solve this question using the following unit circle formula:

[tex]x^2 + y^2 = 1[/tex]

Substitute -5/7 for y

[tex]x^2 + (-\frac{5}{7})^2 = 1[/tex]

[tex]x^2 + \frac{25}{49} = 1[/tex]

Collect Like Terms

[tex]x^2 =1- \frac{25}{49}[/tex]

Take LCM

[tex]x^2 =\frac{49 -25}{49}[/tex]

[tex]x^2 =\frac{24}{49}[/tex]

Take the square root of both sides

[tex]x =\± \sqrt{\frac{24}{49}}[/tex]

[tex]x = \±\frac{\sqrt{24}}{7}[/tex]

[tex]x = \±\frac{\sqrt{4*6}}{7}[/tex]

Split

[tex]x = \±\frac{\sqrt{4}*\sqrt{6}}{7}[/tex]

[tex]x =\± \frac{2*\sqrt{6}}{7}[/tex]

[tex]x =\± \frac{2\sqrt{6}}{7}[/tex]

ACCESS MORE