Respuesta :
2x + 3 / 4
2x / 4 + 3 / 4
x / 2 + 3 / 4
the answer is A
i am a mathematics teacher. if anything to ask please pm me
2x / 4 + 3 / 4
x / 2 + 3 / 4
the answer is A
i am a mathematics teacher. if anything to ask please pm me
we will proceed to solve each case to determine the solution
we have the following expression
[tex]\frac{2x+3}{4}[/tex]
case a) [tex]\frac{x}{2} +\frac{3}{4}[/tex]
Multiply [tex]\frac{x}{2}[/tex] by [tex]\frac{2}{2}[/tex]
[tex]\frac{x}{2}*\frac{2}{2}=\frac{2x}{4}[/tex]
so
[tex]\frac{x}{2} +\frac{3}{4}=\frac{2x}{4} +\frac{3}{4}=\frac{2x+3}{4}[/tex]
[tex]\frac{2x+3}{4}=\frac{2x+3}{4}[/tex]
therefore
the case a) is equivalent to the expression
case b) [tex]\frac{x}{2} -\frac{3}{4}[/tex]
Multiply [tex]\frac{x}{2}[/tex] by [tex]\frac{2}{2}[/tex]
[tex]\frac{x}{2}*\frac{2}{2}=\frac{2x}{4}[/tex]
so
[tex]\frac{x}{2} -\frac{3}{4}=\frac{2x}{4} -\frac{3}{4}=\frac{2x-3}{4}[/tex]
[tex]\frac{2x-3}{4}\neq \frac{2x+3}{4}[/tex]
therefore
the case b) is not equivalent to the expression
case c) [tex]\frac{3x}{4}+\frac{3}{4}[/tex]
[tex]\frac{3x}{4} +\frac{3}{4}=\frac{3x+3}{4}[/tex]
[tex]\frac{3x+3}{4}\neq \frac{2x+3}{4}[/tex]
therefore
the case c) is not equivalent to the expression
case d) [tex]8x+24[/tex]
Multiply [tex]8x+24[/tex] by [tex]\frac{4}{4}[/tex]
[tex](8x+24)*\frac{4}{4}=\frac{32x+96}{4}[/tex]
[tex]\frac{32x+96}{4}\neq \frac{2x+3}{4}[/tex]
therefore
the case d) is not equivalent to the expression
the answer is
The equivalent expression is [tex]\frac{x}{2} +\frac{3}{4}[/tex]