Gaaraaa
contestada

Which sum or difference is equivalent to the following expression? 2x+3 over 4

A) x/2 + 3/4
B) x/2 - 3/4
C) 3x/4 + 3/4
D) 8x + 24

Respuesta :

Azieq
2x + 3 / 4
2x / 4 + 3 / 4
x / 2 + 3 / 4

the answer is A

i am a mathematics teacher. if anything to ask please pm me

we will proceed to solve each case to determine the solution

we have the following expression

[tex]\frac{2x+3}{4}[/tex]

case a) [tex]\frac{x}{2} +\frac{3}{4}[/tex]

Multiply [tex]\frac{x}{2}[/tex] by [tex]\frac{2}{2}[/tex]

[tex]\frac{x}{2}*\frac{2}{2}=\frac{2x}{4}[/tex]

so

[tex]\frac{x}{2} +\frac{3}{4}=\frac{2x}{4} +\frac{3}{4}=\frac{2x+3}{4}[/tex]

[tex]\frac{2x+3}{4}=\frac{2x+3}{4}[/tex]

therefore

the case a) is equivalent to the expression

case b) [tex]\frac{x}{2} -\frac{3}{4}[/tex]

Multiply [tex]\frac{x}{2}[/tex] by [tex]\frac{2}{2}[/tex]

[tex]\frac{x}{2}*\frac{2}{2}=\frac{2x}{4}[/tex]

so

[tex]\frac{x}{2} -\frac{3}{4}=\frac{2x}{4} -\frac{3}{4}=\frac{2x-3}{4}[/tex]

[tex]\frac{2x-3}{4}\neq \frac{2x+3}{4}[/tex]

therefore

the case b) is not equivalent to the expression

case c) [tex]\frac{3x}{4}+\frac{3}{4}[/tex]

[tex]\frac{3x}{4} +\frac{3}{4}=\frac{3x+3}{4}[/tex]

[tex]\frac{3x+3}{4}\neq \frac{2x+3}{4}[/tex]

therefore

the case c) is not equivalent to the expression

case d) [tex]8x+24[/tex]

Multiply [tex]8x+24[/tex] by [tex]\frac{4}{4}[/tex]

[tex](8x+24)*\frac{4}{4}=\frac{32x+96}{4}[/tex]

[tex]\frac{32x+96}{4}\neq \frac{2x+3}{4}[/tex]

therefore

the case d) is not equivalent to the expression

the answer is

The equivalent expression is [tex]\frac{x}{2} +\frac{3}{4}[/tex]