∆ABC is translated 2 units down and 1 unit to the left. Then it is rotated 90° clockwise about the origin to form ∆A′B′C′.

The coordinates of vertex A′ of ∆A′B′C′ are (-2,0), OR (2,1), OR (-1,-2), OR (-2,1)
The coordinates of vertex B′ of ∆A′B′C′ are (1,-1), OR (1,0), OR (5,0), OR (2,-3)
The coordinates of vertex C′ of ∆A′B′C′ are (-1,-1), OR (3,0), OR (-1,0), OR (0,-3)

ABC is translated 2 units down and 1 unit to the left Then it is rotated 90 clockwise about the origin to form ABC The coordinates of vertex A of ABC are 20 OR class=

Respuesta :

Answer:

The coordinates of image are A'(-2,1), B'(1,0) and C'(-1,0).

Step-by-step explanation:

From the figure it is clear that the coordinates of triangle are A(0,0), B(1,3) and C(1,1).

∆ABC is translated 2 units down and 1 unit to the left.

[tex](x,y)\rightarrow (x-1,y-2)[/tex]

[tex]A(0,0)\rightarrow (0-1,0-2)=(-1,-2)[/tex]

[tex]B(1,3)\rightarrow (1-1,3-2)=(0,1)[/tex]

[tex]C(1,1)\rightarrow (1-1,1-2)=(0,-1)[/tex]

Then it is rotated 90° clockwise about the origin to form ∆A′B′C′.

[tex](x,y)\rightarrow (y,-x)[/tex]

[tex](-1,-2)\rightarrow A'(-2,1)[/tex]

[tex](0,1)\rightarrow B'(1,0)[/tex]

[tex](0,-1)\rightarrow C'(-1,0)[/tex]

Therefore the coordinates of image are A'(-2,1), B'(1,0) and C'(-1,0).

Answer:

A'(-2,1), B'(1,0) and C'(-1,0).

Step-by-step explanation: