Respuesta :
Answer:
Step-by-step explanation:
First of all write the auxialary equation as
[tex]m^3-m^2-4m+4 =0\\(m-1)(m-2)(m+2)=0[/tex]
m=1,2,-2
Hence general solution is
[tex]y=Ae^x+Be^{2x} +Ce^{-2x}[/tex]
Particular solution of 5 is
[tex]\frac{5}{4}[/tex]
Particular solution of e^x is
[tex]x(\frac{1}{1-4} e^x =\frac{-xe^x}{3}[/tex]
Particular solution of e^2x is
[tex]x\frac{e^{2x} }{(2+2)(2-1)} =\frac{xe^{2x} }{4}[/tex]
Together full solution is
[tex]y=Ae^x+Be^{2x} +Ce^{-2x}+\frac{5}{4} +\frac{xe^x}{3} +\frac{xe^{2x} }{4}[/tex]
By solving the equation "[tex]y'''-y''-4y'+4y=5-e^x+e^2x[/tex]" we get "[tex]y = Ae^x+Be^{2e}+Ce^{-2x}+\frac{5}{4}+\frac{xe^x}{3} +\frac{xe^{2x}}{4}[/tex]".
As we know the auxiliary equations,
- [tex]m^3-m^2-4m+4=0[/tex]
- [tex](m-1)(m-2)(m+2) =0[/tex]
here,
m = 1, 2, -2
Thus,
The general equation will be:
→ [tex]y = Ae^x+Be^{2x}+Ce^{-2x}[/tex]
Particularly,
- [tex]5 = \frac{5}{4}[/tex]
- [tex]e^x= x(\frac{1}{1-4}e^x ) = -\frac{xe^x}{3}[/tex]
- [tex]e^{2x} = x(\frac{e^{2x}}{(2+2)(2-1)} )= \frac{xe^{2x}}{4}[/tex]
hence,
The complete equation will be:
→ [tex]y = Ae^x+Be^{2e}+Ce^{-2x}+\frac{5}{4}+\frac{xe^x}{3} +\frac{xe^{2x}}{4}[/tex]
Thus the above answer is right.
Learn more:
https://brainly.com/question/22449567