Respuesta :
Answer:
Purplemath
First you learned (back in grammar school) that you can add, subtract, multiply, and divide numbers. Then you learned that you can add, subtract, multiply, and divide polynomials. Now you will learn that you can also add, subtract, multiply, and divide functions. Performing these operations on functions is no more complicated than the notation itself. For instance, when they give you the formulas for two functions and tell you to find the sum, all they're telling you to do is add the two formulas. There's nothing more to this topic than that, other than perhaps some simplification of the expressions involved.
MathHelp.com
Need a personal math teacher?
Given f (x) = 3x + 2 and g(x) = 4 – 5x, find (f + g)(x), (f – g)(x), (f × g)(x), and (f / g)(x).
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}(
g
f
)(x)=
g(x)
f(x)
= \small{\dfrac{3x+2}{4-5x}}=
4−5x
3x+2
Step-by-step explanation:
Purplemath
First you learned (back in grammar school) that you can add, subtract, multiply, and divide numbers. Then you learned that you can add, subtract, multiply, and divide polynomials. Now you will learn that you can also add, subtract, multiply, and divide functions. Performing these operations on functions is no more complicated than the notation itself. For instance, when they give you the formulas for two functions and tell you to find the sum, all they're telling you to do is add the two formulas. There's nothing more to this topic than that, other than perhaps some simplification of the expressions involved.
MathHelp.com
Need a personal math teacher?
Given f (x) = 3x + 2 and g(x) = 4 – 5x, find (f + g)(x), (f – g)(x), (f × g)(x), and (f / g)(x).
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}(
g
f
)(x)=
g(x)
f(x)
= \small{\dfrac{3x+2}{4-5x}}=
4−5x
3x+2