Respuesta :

Answer:

120 liters of the 10% solution should be mixed with 60 liters of a 25% solution to  get a 15% solution.

Step-by-step explanation:

Let 'x' be the quantity of 10% solution

Given that we need determine many liters of a 10% solution should be mixed with 60 liters of a 25% solution to  get a 15% solution.

As

10% of x = 0.1x

60 liters of a 25%  = 60 × 0.25

Thus,

The equation becomes

[tex]0.1x+60\times \:0.25=0.15\left(x+60\right)[/tex]

Multiply both sides by 100  

[tex]0.1x\times \:100+15\times \:100=0.15\left(x+60\right)\times \:100[/tex]  

[tex]10x+1500=15\left(x+60\right)[/tex]

[tex]10x+1500=15x+900[/tex]

Subtract 1500 from both sides

[tex]10x+1500-1500=15x+900-1500[/tex]

Simplify

[tex]10x=15x-600[/tex]

Subtract 15x from both sides

[tex]10x-15x=15x-600-15x[/tex]

Simplify

[tex]-5x=-600[/tex]

Divide both sides by -5

[tex]\frac{-5x}{-5}=\frac{-600}{-5}[/tex]

Simplify

[tex]x=120[/tex]

Therefore,

  • 120 liters of the 10% solution should be mixed with 60 liters of a 25% solution to  get a 15% solution.