Respuesta :

Answer:

[tex]V_2= \frac{28}{3} u^3[/tex]

Step-by-step explanation:

Given

Represent the volume of the cylinder with V1 and the volume of the sphere with V2

So, from the first statement: we have:

[tex]V_2 =\frac{2}{3}V_1[/tex]

and

[tex]V_1 = 14u^3[/tex]

To solve for [tex]V_2[/tex], we simply substitute [tex]14u^3[/tex] for [tex]V_1[/tex] in [tex]V_2 =\frac{2}{3}V_1[/tex]

[tex]V_2 =\frac{2}{3}V_1[/tex]

[tex]V_2= \frac{2}{3} * 14u^3[/tex]

[tex]V_2= \frac{2* 14}{3} u^3[/tex]

[tex]V_2= \frac{28}{3} u^3[/tex]

Hence, the volume of the sphere is [tex]\frac{28}{3} u^3[/tex]