Answer:
[tex]V_2= \frac{28}{3} u^3[/tex]
Step-by-step explanation:
Given
Represent the volume of the cylinder with V1 and the volume of the sphere with V2
So, from the first statement: we have:
[tex]V_2 =\frac{2}{3}V_1[/tex]
and
[tex]V_1 = 14u^3[/tex]
To solve for [tex]V_2[/tex], we simply substitute [tex]14u^3[/tex] for [tex]V_1[/tex] in [tex]V_2 =\frac{2}{3}V_1[/tex]
[tex]V_2 =\frac{2}{3}V_1[/tex]
[tex]V_2= \frac{2}{3} * 14u^3[/tex]
[tex]V_2= \frac{2* 14}{3} u^3[/tex]
[tex]V_2= \frac{28}{3} u^3[/tex]
Hence, the volume of the sphere is [tex]\frac{28}{3} u^3[/tex]