Respuesta :

Answer:

The exact value

  [tex]sin^{-1} (\frac{-1}{2} ) = \frac{7\pi }{6}[/tex]  =  210°

Step-by-step explanation:

Step(i):-

Given that the inverse trigonometry

          [tex]sin^{-1} (\frac{-1}{2} )[/tex]

We know that the sine function has negative in third quadrant

 [tex]sin^{-1} (\frac{-1}{2} ) = sin^{-1} ( sin (\pi +\frac{\pi }{6} )[/tex]

We have to use trigonometric formula

[tex]sin^{-1} ( sin (x)) = x[/tex]

Step(ii):-

[tex]sin^{-1} (\frac{-1}{2} ) = sin^{-1} ( sin (\pi +\frac{\pi }{6} ) = \pi +\frac{\pi }{6}[/tex]

                                                = [tex]\frac{6\pi +\pi }{6} = \frac{7\pi }{6}[/tex]

Final answer:-

The exact value

  [tex]sin^{-1} (\frac{-1}{2} ) = \frac{7\pi }{6}[/tex]