Respuesta :

PROPORTIONAL EQUATION

Exercise

Apply the means-extremes property of proportions: this allows you to cross multiply:

                [tex]\boxed{\mathsf{\dfrac{x}{4} = \dfrac{x - 6}{3}}}[/tex]

[tex]\mathsf{\dfrac{x}{4} \searrow \dfrac{x - 6}{3}}[/tex]      ‏‏‎      ‏‏‎‎      [tex]\mathsf{\dfrac{x}{4} \nearrow \dfrac{x-6}{3}}[/tex]‏‏‎‎

             [tex]\boxed{\mathsf{3x = 4(x - 6)}}[/tex]

Apply the distributive property:

[tex]\mathsf{3x = 4(x-6)}[/tex]

[tex]\mathsf{3x = 4(x) - 4(6)}[/tex]

[tex]\mathsf{3x = 4x - 24}[/tex]

Add 24 to both sides:

[tex]\mathsf{3x + 24 = 4x - 24 + 24}[/tex]

[tex]\mathsf{3x + 24 = 4x}[/tex]

Substract 3x to both sides

[tex]\mathsf{3x - 3x + 24 = 4x - 3x}[/tex]

[tex]\mathsf{24 = 4x - 3x}[/tex]

[tex]\large{\boxed{\mathsf{24 = x}}}[/tex]

‎      ‏‏‎

Answer. The value of x = 24.

‎      ‏‏‎