Respuesta :

hl9843

Answer:

185.05 g.

Explanation

Firstly, It is considered as a stichiometry problem.

From the balanced equation: 2LiCl → 2Li + Cl₂

It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.

We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.

n = (30.3 g) / (6.941 g/mole) = 4.365 moles.

Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.

Using cross multiplication:

2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.

??? moles of LiCl → 4.365  moles of Li.

The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.

Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).

Molar mass of LiCl = 42.394 g/mole.

mass = n x molar mass = (4.365 x 42.394) = 185.05 g.

Answer:

5.69

Explanation:

1 gram of lithium is .144 of a mole, since you have 39.5 grams of lithium you can multiply .144 by 39.5 to get an answer of 5.69