Answer:
[tex]96\ \text{cm}^2[/tex]
[tex]17.1\ \text{cm}[/tex]
Step-by-step explanation:
[tex]DC[/tex] is the length of the hypotenuse of the triangle [tex]CED[/tex].
So
[tex]DC=\sqrt{ED^2+EC^2}\\\Rightarrow DC=\sqrt{16^2+6^2}\\\Rightarrow DC=17.1\ \text{cm}[/tex]
The perimeter of the [tex]ABCD[/tex] is [tex]17.1\ \text{cm}[/tex]
[tex]AB+AD+DC+CB=6+24+17.1+8=55.1\ \text{cm}[/tex]
The Area of [tex]ABCD[/tex] would be
Area of rectangle ABEC+Area of triangle CED
[tex]8\times 6+\dfrac{1}{2}\times 16\times 6=96\ \text{cm}^2[/tex]
The area of the figure [tex]ABCD[/tex] is [tex]96\ \text{cm}^2[/tex].