Respuesta :

Answer:

The dimensions that match Alice's rectangle are 7 cm and 8 cm.

Step-by-step explanation:

The perimeter of the rectangle is given by:

[tex] P = 2(a + b) = 30 cm [/tex]    (1)                              

Where a and b are the sides of the rectangle

Also, the area of the rectangle is:

[tex] A = a\times b = 56 cm^{2} [/tex]   (2)

By solving equation (1) for a, we have:

[tex] a = 15 cm - b [/tex]      (3)                      

Now, by entering equation (3) into (2) we can find one side of the rectangle:

[tex] 56 cm^{2} = (15 cm - b)\times b [/tex]          

[tex] b^{2} - 15b + 56 = 0 [/tex]                                                        

Solving the above quadratic equation we have:

b₁ = 7 cm  and b₂ = 8 cm                      

Now, the other side of the rectangle can be calculated with equation (3):

[tex] a = 15 cm - b_{1} = 15 - 7 cm = 8 cm [/tex]                          

or    

[tex] a = 15 cm - b_{2} = 15 - 8 cm = 7 cm [/tex]            

Taking the first solution (b₁) or the second (b₂), we find that the dimensions that match Alice's rectangle are 7 cm and 8 cm.          

Therefore, the dimensions that match Alice's rectangle are 7 cm and 8 cm.

                                               

I hope it helps you!