Respuesta :
I hope this helps you
x^2+y^2=9
x^2-y^2=1
x^2+y^2+x^2-y^2=9+1
2x^2=10
x^2=5
x= square root of 5
5+y^2=9
y^2=4
y=2
(square root of 5,2)
x^2+y^2=9
x^2-y^2=1
x^2+y^2+x^2-y^2=9+1
2x^2=10
x^2=5
x= square root of 5
5+y^2=9
y^2=4
y=2
(square root of 5,2)
Answer: The solution of the given system is,
(√5, 2)
(√5, -2)
(-√5, 2)
(-√5, -2)
Step-by-step explanation:
Here, the given system of equation is,
[tex]x^2+y^2=9[/tex] --------(1)
[tex]x^2-y^2=1[/tex] ----------(2)
By adding the above equations,
We get,
[tex]2x^2=10[/tex]
[tex]x^2=5[/tex]
[tex]x=\pm \sqrt{5}[/tex]
When x = √5
Then, from the equation (1),
[tex]5 + y^2=9[/tex]
[tex]y^2=4[/tex]
[tex]y=\pm 2[/tex]
Hence, the solutions are (√5, 2) and (√5,-2)
Again if x = -√5,
By equation (1),
[tex]5+y^2=9[/tex]
[tex]y^2=4[/tex]
[tex]y=\pm 2[/tex]
Hence, the solutions are (-√5,2) and (-√5,-2)
Thus, the all solutions of the given system are (√5,2), (√5,-2), (-√5,2) and (-√5,-2)
⇒ All options are correct.