Respuesta :
Answer:
Write
csc
4
x
as
1
sin
4
x
and
cot
4
x
as
cos
4
x
sin
4
x
⇒
csc
4
x
−
cot
4
x
=
1
sin
4
x
−
cos
4
x
sin
4
x
=
1
−
cos
4
x
sin
4
x
Now recall that
a
2
−
b
2
=
(
a
−
b
)
⋅
(
a
+
b
)
and use this fact with
a
2
being and
b
2
being
cos
4
x
so that
a
is 1 and b is
cos
2
x
So
csc
4
x
−
cot
4
x
=
1
−
cos
4
x
sin
4
x
=
(
1
−
cos
2
x
)
⋅
1
+
cos
2
x
sin
4
x
But
cos
2
x
+
sin
2
x
=
1
so that
1
−
cos
2
x
=
sin
2
x
so
csc
4
x
−
cot
4
x
=
sin
2
x
⋅
1
+
cos
2
x
sin
4
x
=
1
+
cos
2
x
sin
2
x
=
(
1
sin
2
x
)
+
(
cos
2
x
sin
2
x
)
=
c
s
x
2
x
+
cos
2
x
Step-by-step explanation:
Answer:
so cot^6 (x) =cot^4 (x) csc^2 (x)-cot^4 (x) then you just manipulate the right side cot^4(x)csc^2(x)-cot^4(x) =cot^6(x) which is true
Step-by-step explanation: