A rectangle is drawn so that the width is 3 feet shorter than the length. The area of the rectangle is 70 square feet. Find the length of the rectangle.

Respuesta :

Answer:

The length of the rectangle (l) = 10 cm

The width of the rectangle (w) = 7 cm

Step-by-step explanation:

Step(i):-

Let 'x' be the length of the rectangle

Given that the width is 3 feet shorter than the length

The width of the rectangle = x -3

Area of the rectangle = length × width

Step(ii):-

Area of the rectangle = length × width

                                  = x ( x-3)

Given that the area of the rectangle = 70 square feet

                       x ( x-3) = 70

              ⇒   x² - 3x - 70 =0

              ⇒  x² - 10 x + 7 x - 70 =0

             ⇒  x (x -10) +7( x-10) =0

            ⇒ ( x+7) ( x-10) = 0

           ⇒  x =-7 and x=10

Final answer:-

we choose x=10

The length of the rectangle (l) = 10 cm

The width of the rectangle (w) = 7 cm