Respuesta :

Answer:

[tex]P(Tail = 1) = \frac{1}{2}[/tex]

Step-by-step explanation:

Given

[tex]Flips = 2[/tex]

Required

Probability of exactly one tail

This event can be represented as:

(Head and Tail) or (Tail and Head)

In the flip of a coin (penny), the following probabilities exist:

[tex]P(Head) = \frac{1}{2}[/tex]

[tex]P(Tail) = \frac{1}{2}[/tex]

So, the required probability is:

[tex]P(Tail = 1) = (P(Head) * P(Tail)) + (P(Tail) * P(Head))[/tex]

Substitute values for P(Head) and P(Tail)

[tex]P(Tail = 1) = (\frac{1}{2}*\frac{1}{2}) + (\frac{1}{2}*\frac{1}{2})[/tex]

[tex]P(Tail = 1) = (\frac{1}{4}) + (\frac{1}{4})[/tex]

[tex]P(Tail = 1) = \frac{1}{4} + \frac{1}{4}[/tex]

Take LCM

[tex]P(Tail = 1) = \frac{1+1}{4}[/tex]

[tex]P(Tail = 1) = \frac{2}{4}[/tex]

[tex]P(Tail = 1) = \frac{1}{2}[/tex]