Answer:
[tex]P(Tail = 1) = \frac{1}{2}[/tex]
Step-by-step explanation:
Given
[tex]Flips = 2[/tex]
Required
Probability of exactly one tail
This event can be represented as:
(Head and Tail) or (Tail and Head)
In the flip of a coin (penny), the following probabilities exist:
[tex]P(Head) = \frac{1}{2}[/tex]
[tex]P(Tail) = \frac{1}{2}[/tex]
So, the required probability is:
[tex]P(Tail = 1) = (P(Head) * P(Tail)) + (P(Tail) * P(Head))[/tex]
Substitute values for P(Head) and P(Tail)
[tex]P(Tail = 1) = (\frac{1}{2}*\frac{1}{2}) + (\frac{1}{2}*\frac{1}{2})[/tex]
[tex]P(Tail = 1) = (\frac{1}{4}) + (\frac{1}{4})[/tex]
[tex]P(Tail = 1) = \frac{1}{4} + \frac{1}{4}[/tex]
Take LCM
[tex]P(Tail = 1) = \frac{1+1}{4}[/tex]
[tex]P(Tail = 1) = \frac{2}{4}[/tex]
[tex]P(Tail = 1) = \frac{1}{2}[/tex]