Answer:
Follows are the solution to the given question:
Explanation:
For point a:
[tex]T= 2\pi \sqrt{\frac{m}{k}}\\\\k = \frac{4 \pi^2 m}{T^2}\\\\= \frac{4 \times (3.14)^2 \times 3}{2^2}\\\\=29.578 \ \frac{N}{m}\\\\[/tex]
For Point b:
[tex]E=\frac{1}{2} m a^2 w^2\\\\[/tex]
[tex]=\frac{1}{2} \times m \times a^2 \times \frac{4\pi^2}{T^2}\\\\=\frac{1}{2} \times 3 \times (0.15)^2 \times \frac{4\times 3.14^2}{2^2}\\\\=0.332 \ J[/tex]
For Point C:
[tex]V_{max}= a w[/tex]
[tex]= (0.15) \times \frac{2\pi}{T}\\\\= (0.15) \times \frac{2\times 3.14}{2}\\\\=0.471 \frac{m}{s}[/tex]
For point D:
[tex]X= a \sin (wt+ \phi)\\\\0.91=0.15 \sin(\frac{2\pi}{T} \times t+\phi)\\\\0.91=0.15 \sin(\frac{2\times 3.14}{2} \times 0.5+\phi)\\\\0.60 = \sin(3.14 \times 0.5+\phi)\\\\0.60 = \sin(1.57+\phi)\\\\1.57 +\phi =\sin^{-1} 60^{\circ}\\\\1.57 +\phi = 36.86^{\circ}\\\\=35.29^{\circ}\\\\So, X=15 \sin(3.14t+35.29^{\circ}) \ cm[/tex]