Answer:
d = 19
Step-by-step explanation:
________________________________
FACTS TO KNOW BEFORE SOLVING :-
For a cuboid with dimensions l , b & h ,
Diagonal of a cuboid = [tex]\sqrt{l^{2} + b^{2} + h^{2}}[/tex]
________________________________
According to the question ,
l = 10 ; b = 6 ; h = 15
So , Diagonal of the cuboid (d) =
[tex]d = \sqrt{10^{2} + 6^{2} + 15^{2}} = \sqrt{100 + 36 + 225} = \sqrt{361} = 19[/tex]