Answer: All expect cos of theta=17/8
Step-by-step explanation: Fist, let find a equal cos equation. let use the idenitiy([tex]cos^{2}[/tex]Ф+[tex]sin^{2}[/tex]Ф=1. [tex]cos^{2}[/tex]+15/17^2=1, [tex]cos^{2}[/tex]=1-225/289. [tex]cos^{2}[/tex]=289/289-225/289. [tex]cos^{2}[/tex]=64/289. sqr root of [tex]cos^{2}[/tex]= 8/17.
Using Other Formulas, Since secant is the reciprocal of cosine. sec(theta)=17/8. since cosecant is the inverse of sin. csc(theta)=17/15.
Using the formula sin x/cos x= tan x , [tex]\frac{15}{17}[/tex]=[tex]\frac{8}{17}[/tex] =15/8.