Answer:
[tex]S_{15} = 299593[/tex]
Step-by-step explanation:
Given
[tex]262144,\ 32768,\ 4096,\ 512; ...[/tex]
Required
Determine the 15th partial sum
The nth partial sum of a geometric series is:
[tex]S_n = a* \frac{1 - r^n}{1 - r}[/tex]
In this case:
[tex]a = 262144[/tex]
[tex]n = 15[/tex]
r is calculated as:
[tex]r = \frac{32768}{262144}[/tex]
[tex]r = 0.125[/tex]
Substitute values for a, r and n in [tex]S_n = a* \frac{1 - r^n}{1 - r}[/tex]
[tex]S_{15} = 262144* \frac{1 - 0.125^{15}}{1 - 0.125}[/tex]
[tex]S_{15} = 262144* \frac{1}{0.875}[/tex]
[tex]S_{15} = \frac{262144* 1}{0.875}[/tex]
[tex]S_{15} = \frac{262144}{0.875}[/tex]
[tex]S_{15} = 299593.142857[/tex]
[tex]S_{15} = 299593[/tex] -- approximated