Answer:
a) the friction angle of the sand is 36.87°
b) the deviator stress at failure is 450 kN/m³
Explanation:
Given the data in the question;
For a consolidated drained test
The effective major principle stresses
σ₃ = σ₃' = 80 kN/m²
and
σ₁' = σ₃' + (Δσ[tex]_{d}[/tex])[tex]_{f}[/tex] = 80 kN/m² + 240 kN/m² = 320 kN/m²
now
a) friction angle of the sand
σ₁' = σ₃'tan²( 45° + Ф/2' ) + 2c' tan( 45° + Ф/2 )
for sand; c' = 0
so
σ₁' = σ₃'tan²( 45° + Ф/2' )
we substitute
320 = 80 tan²( 45° + Ф/2' )
Ф' = 2 × [ tan⁻¹ (√[tex]\frac{320}{80}[/tex]) - 45° ]
Ф' = 2 × [ 63.4349° - 45° ]
Ф' = 2 × 18.4349
Ф' = 36.87°
Therefore, the friction angle of the sand is 36.87°
b) deviator stress
σ₁' = σ₃'tan²( 45° + Ф/2' )
σ₁' = σ₃' + (Δσ[tex]_{d}[/tex])[tex]_{f}[/tex] = σ₃'tan²( 45° + Ф/2' )
σ₃' + (Δσ[tex]_{d}[/tex])[tex]_{f}[/tex] = σ₃'tan²( 45° + Ф/2' ) 3.597
150 + (Δσ[tex]_{d}[/tex])[tex]_{f}[/tex] = 150tan²( 45° + 36.87°/2 )
150 + (Δσ[tex]_{d}[/tex])[tex]_{f}[/tex] = 600
(Δσ[tex]_{d}[/tex])[tex]_{f}[/tex] = 600 - 150
(Δσ[tex]_{d}[/tex])[tex]_{f}[/tex] = 450 kN/m³
Therefore, the deviator stress at failure is 450 kN/m³