Answer:
The 95% of confidence interval are
(15.8663 ,16.2337)
Step-by-step explanation:
Step(i):-
Size of the Population = 16
Size of the sample (n) = 4
The mean of the sample = 16.05 oz
The standard deviation of the sample (S) = 0.1 oz
Degrees of freedom =n-1 =4-1 =3
t₀.₀₅,₃ = 3.1824
Step(ii):-
The 95% of confidence interval is determined by
[tex](x^{-} - Z_{0.05} \frac{S}{\sqrt{n} } , x^{-} -+Z_{0.05} \frac{S}{\sqrt{n} })[/tex]
[tex](16.05 - 3.1824\frac{0.1}{\sqrt{3} } , 16.05 -+3.1824 \frac{0.1}{\sqrt{3} })[/tex]
(16.05 - 0.1837 ,16.05 +0.1837 )
(15.8663 ,16.2337)
Final answer:-
The 95% of confidence interval are
(15.8663 ,16.2337)