Respuesta :
Answer:
a)[tex]V=\pi *r^2 * \sqrt{2gd}[/tex]
b)[tex]dh / dt = 0.2658 mm / min[/tex]
Explanation:
From the question we are told that
Diameter of hole [tex]d_h=4mm=>0.004m[/tex]
Depth of hole [tex]D=0mm=>0.001m[/tex]
Diameter of tank [tex]d_t=2mm=>0.002m[/tex]
Generally the equation for pressure is mathematically given as
[tex]Pressure P= \rho*g*d[/tex]
[tex]P= 1/2*\rho *v^2[/tex]
Where
[tex]v = \sqrt {2gd}[/tex]
[tex]V = Area*v[/tex]
[tex]V=\pi *r^2 * \sqrt{2gd}[/tex]
Generally the level at which the water level will initially drop if the water is not replenished is mathematically given by
[tex]dh / dt = (r/R)^2 *sqrt{2gd}\\dh / dt = (2/2000)^2 *sqrt(2*9.81*1) \\dh / dt = 4.429*10^-3 mm/s \\[/tex]
Therefore the level at which the water level will initially drop if the water is not replenished
[tex]dh / dt = 0.2658 mm / min[/tex]
The rate, in mm/min, at which the water level will initially drop will be 1.0625 mm/min.
Given data:
The diameter of hole is, d = 4.0 mm = 0.004 m.
The depth of hole is, h = 1.0 m.
The diameter of tank is, d' = 2.0 m.
The given problem is based on the flow rate, which is defined as the flow of liquid through a given section per unit time.
Let us first obtain the equation of pressure as,
[tex]P=\dfrac{1}{2} \times \rho \times v^{2}[/tex]
Here, v is the velocity of efflux and its value is,
[tex]v=\sqrt{2gh} \\\\v^{2}=2gh[/tex]
And the level at which the water level will initially drop if the water is not replenished is mathematically given by,
[tex]\dfrac{dH}{dt}=(r/R)^{2} \times v[/tex]
Here,
r is the radius of hole.
R is the radius of tank.
Solving as,
[tex]\dfrac{dH}{dt}=((d/2) /(d'/2))^{2} \times \sqrt{2gh} \\\\\dfrac{dH}{dt}=((0.004/2) /(2/2))^{2} \times \sqrt{2 \times 9.8 \times 1}\\\\\dfrac{dH}{dt}=1.77 \times 10^{-5} \;\rm m/s\\\\\dfrac{dH}{dt}=1.77 \times 10^{-5} \times 6 \times 10^{4} \;\rm mm/min\\\\\dfrac{dH}{dt}=1.0625 \;\rm mm/min[/tex]
Thus, we can conclude that the rate, in mm/min, at which the water level will initially drop will be 1.0625 mm/min.
Learn more about the flow rate here:
https://brainly.com/question/11816739