Rewrite the rational exponent as a radical by extending the properties of integer exponents.

2 to the 3 over 4 power, all over 2 to the 1 over 2 power

the eighth root of 2 to the third power - THIS ONE
the square root of 2 to the 3 over 4 power
the fourth root of 2
the square root of 2

Respuesta :

The answer is the fourth root of 2.

2 to the 3 over 4 power is [tex]2^{ \frac{3}{4} } [/tex]
2 to the 1 over 2 power is [tex] 2^{ \frac{1}{2} } [/tex]
2 to the 3 over 4 power, all over 2 to the 1 over 2 power is [tex] \frac{2^{ \frac{3}{4} } }{2^{ \frac{1}{2} }} [/tex]

So, use the rule: [tex] \frac{x^{a} }{ x^{b} } = x^{a-b} [/tex]
[tex]\frac{2^{ \frac{3}{4} } }{2^{ \frac{1}{2} }} = 2^{\frac{3}{4}- \frac{1}{2}}= 2^{\frac{3}{4}- \frac{1*2}{2*2}}= 2^{\frac{3}{4}- \frac{2}{4}}= 2^{ \frac{3-2}{4} } = 2^{ \frac{1}{4} } [/tex]

Now, use the rule: [tex] a^{ \frac{m}{n}} = \sqrt[n]{ x^{m} } [/tex]
[tex]2^{ \frac{1}{4} } = \sqrt[4]{ 2^{1} }= \sqrt[4]{2} [/tex]
which is the same as the fourth root of 2.

Answer:

4th rout of 2

Step-by-step explanation:

I did this quiz before