Respuesta :
Answer:
% Free space in water = [tex]\frac{9.945* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.45%
% Free space in ice = [tex]\frac{9.98* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.8%
Explanation:
As given ,
Density for ice at 0⁰C = 0.917 g/ml
Density for water at 0⁰C = 0.999 g/ml
Radii of H atoms = 37 pm
Radii of O atoms = 66 pm
Now,
Consider 1 ml of water = 1 cm²
As , we know that mass of water in 1 cm² = 0.999 g
Moles of water = [tex]\frac{0.999}{18} = 0.056[/tex]
Volume of H₂O = 1.624×[tex]10^{-31}[/tex] m²
Now,
Volume occupied by water = 0.056×6.022×[tex]10^{23}[/tex]× 1.624×[tex]10^{-31}[/tex] m²
= 5.48×[tex]10^{-9}[/tex] m²
⇒Volume occupied by water = 5.48×[tex]10^{-9}[/tex] m²
Now,
Free space = 1×[tex]10^{-6}[/tex] - 5.48×[tex]10^{-9}[/tex] = 9.95×[tex]10^{-7}[/tex] m²
% Free space = [tex]\frac{9.945* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.45%
Now,
Consider 1 ml of ice = 1 cm²
S.I unit of ice = 1×[tex]10^{-6}[/tex] m²
As , we know that mass of water in 1×[tex]10^{-6}[/tex] m² = 0.917 g
Moles of ice = [tex]\frac{0.917}{18} = 0.012[/tex]
Volume of H₂O = 6.022×[tex]10^{23}[/tex] ×0.012
Volume of ice unit = [tex]\frac{4}{3} \pi (37*10^{-12})^{3} *2 + \frac{4}{3} \pi (66*10^{-12})^{3} = 1.624*10^{-31}m^{3}[/tex]
Now,
Volume occupied by water = 0.012×6.022×[tex]10^{23}[/tex]× 1.624×[tex]10^{-31}[/tex] m²
= 1.17×[tex]10^{-9}[/tex] m²
⇒Volume occupied by water = 1.17×[tex]10^{-9}[/tex] m²
Now,
Free space = 1×[tex]10^{-6}[/tex] - 1.17×[tex]10^{-9}[/tex] = 9.98×[tex]10^{-7}[/tex] m²
% Free space = [tex]\frac{9.98* 10^{-7} }{1*10^{-6} }[/tex]×100 = 99.8%