Answer:
[tex]f(x)=\frac{(\sqrt{x}+x+3)^2+2+x}{x^2+2}[/tex]
Step-by-step explanation:
We have to find the formula for f(x)
Let x be the number
According to question
Now,
[tex]\sqrt{x}+x+3[/tex]
Now,
After squaring we get
[tex](\sqrt{x}+x+3})^2[/tex]
Add x+2 to above result then, we get
[tex](\sqrt{x}+x+3})^2+2+x[/tex]
Then,
[tex]\frac{(\sqrt{x}+x+3)^2+2+x}{x^2+2}[/tex]
Therefore, the formula for f(x) is given by
[tex]f(x)=\frac{(\sqrt{x}+x+3)^2+2+x}{x^2+2}[/tex]